← Back to team overview

calchep team mailing list archive

test

 

This is the test
Sasha

--
______________________________________________________________________
Prof. Alexander S Belyaev (a.belyaev@xxxxxxxxxxx)
http://www.hep.phys.soton.ac.uk/~belyaev/

School of Physics &  Astronomy, University of Southampton, Office: 5047
SO17 1BJ, TEL.: +44 (0)23 8059 8509; FAX.: +44 (0)23 8059 3910	
.....................................................................
Particle Physics Department, Rutherford Appleton Laboratory, Didcot,
OX11 0QX, TEL.:  +44 (0)1235 445562; FAX.:  +44 (0)1235 446733
.....................................................................
CERN: Office: 40 1-B20 Mailbox: E27910; ccid: 532076
TEL: +41 22 76 71642
______________________________________________________________________
model 'MUED-Chloe-4KK'/6.


option ReduceGamma5=0.
use sm_tex.
option chepCFWidth=100.
option chepLPWidth=1000.
option chepPDWidth=500.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Prettifying the "Prtcls" table 

prtcformat fullname: 
'Full Name                 ', name:'       p       ', aname:'       ap       ', pdg:'    PDG ID    ', 
spin2:'2*spin', mass:' mass ',width:'   width    ', 
color, aux, texname:'>          LaTeX(A)         <', atexname:'>          LaTeX(A+)           < ' .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% PARAMETERS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


parameter  EE  = 0.31343 : 'Electromagnetic coupling constant (<->1/128)',
	   	  GG  = 1.21978   : 'Strong coupling constant (Z point)  (PDG-2010)',
	   	  GS  = 1.21978   : 'Strong coupling constant (Z point)  (PDG-2010)',
	  	  SW  = 0.48094 : 'sin of the Weinberg angle (PDG-2010)',
%        	  s12 = 0.2253   : 'Parameter of C-K-M matrix (PDG-2010)',
%		  s23 = 0.041   : 'Parameter of C-K-M matrix (PDG-2010)',
%	            s13 = 0.0039  : 'Parameter of C-K-M matrix (PDG-2010)',
  		  s12 = 0   : 'Parameter of C-K-M matrix (PDG-2010)',
		  s23 = 0   : 'Parameter of C-K-M matrix (PDG-2010)',
	            s13 = 0  : 'Parameter of C-K-M matrix (PDG-2010)',
         		  invR=500 : 'Inverse radius of the 5th dimension',
		  R=1/invR : 'Compactification radius',
		  LR=20 : 'UV cutoff',
		  L=LR/R,
%		  zeta3 =1.20206  : 'zeta(3)',
		  zeta3 =0  : 'zeta(3)',
		  pi=4*atan(1)  : 'pi',
		  MZ=91.1876  : 'mass of Z boson',
		  Me = 0.000511 : 'mass of electron',
		  Mmu = 0.10566  : 'mass of muon',
		  Mtau  = 1.77682  : 'mass of tau-lepton',
		  Mu = 0.0025  : 'mass of u-quark',
		  Md = 0.00495  : 'mass of d-quark',
		  Mc  = 1.27  : 'mass of c-quark',
		  Ms = 0.101  : 'mass of s-quark',
		  Mtop = 172.0  : 'mass of top-quark',
		  Mb =  4.67  : 'mass of b-quark',
		  MH = 120 : 'mass of Higgs',
		  scaleR = 1 : 'running scale multiplied by R',
		  Sqrt3 = sqrt(3) : 'square root of 3',
		  Sqrt8 = sqrt(8) : 'square root of 8'.

parameter  CW  = sqrt(1-SW**2) : 'cos of the Weinberg angle'.

parameter  c12  = sqrt(1-s12**2) : 	'parameter  of C-K-M matrix',
	           c23  = sqrt(1-s23**2) : 	'parameter  of C-K-M matrix',
     	  	  c13  = sqrt(1-s13**2) : 	'parameter  of C-K-M matrix'.

parameter  Vud = c12*c13 		: 'C-K-M matrix element',
		  Vus = s12*c13 		: 'C-K-M matrix element',
		  Vub = s13     		: 'C-K-M matrix element',
         		  Vcd = (-s12*c23-c12*s23*s13) : 'C-K-M matrix element',
        		  Vcs = (c12*c23-s12*s23*s13)  : 'C-K-M matrix element',
		  Vcb = s23*c13 		: 'C-K-M matrix element',
		  Vtd = (s12*s23-c12*c23*s13) 	: 'C-K-M matrix element',
		  Vts = (-c12*s23-s12*c23*s13)	: 'C-K-M matrix element',
		  Vtb = c23*c13  		: 'C-K-M matrix element'.

parameter v=2*MZ*CW*SW/EE, lambdaH=((EE/SW)*MH/(MZ*CW))**2/16.

parameter  htop = Sqrt2*Mtop/v : 'Top Yukawa coupling'.


OrthMatrix( {{Vud,Vus,Vub}, {Vcd,Vcs,Vcb}, {Vtd,Vts,Vtb}} ).

let PL=(1-gamma5)/2, PR=(1+gamma5)/2.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ONE-LOOP PARAMETERS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


parameter factbulk=zeta3/2*1/(16*pi**4)    :  'common factor for bulk corrections'.


parameter  factbound = 1/(16*pi**2)*log(LR**2/ scaleR**2)		    :  'common factor for boundary corrections, we take the running scale mu=n/R'.


parameter        SZG = sqrt(1 + GS**2*((23/2)*factbound- (3/2)*factbulk)),
		 SZB = sqrt(1 - (EE/CW)**2*((1/6)*factbound+ (39/2)*factbulk)),
		 SZW = sqrt(1 + (EE/SW)**2*((15/2)*factbound- (5/2)*factbulk)),
		 ZH = 1 + (3/2*(EE/SW)**2 + 3/4*(EE/CW)**2 - 4*lambdaH)*factbound,
		 ZQ = 1 + (3*GS**2 + (27/16)*(EE/SW)**2 + (1/16)*(EE/CW)**2)*factbound,
		 Zu = 1 + (3*GS**2 + (EE/CW)**2)*factbound,
		 Zd = 1 + (3*GS**2 + (1/4)*(EE/CW)**2)*factbound,
		 ZL = 1 + ((27/16)*(EE/SW)**2 + (9/16)*(EE/CW)**2)*factbound,
		 Ze = 1 + ((9/4)*(EE/CW)**2)*factbound,
		 ZTL = 1 + (3*GS**2 + (27/16)*(EE/SW)**2 + (1/16)*(EE/CW)**2 - 3/4*htop**2)*factbound,
		 ZtR = 1 + (3*GS**2 + (1/4)*(EE/CW)**2  - 3/2*htop**2)*factbound.




_n=[1,2,3,4] in parameter  M11BW_n= SZB**2*(_n/R)**2 + 1/4*(EE/CW)**2*v**2			  			      :  'B-W3 mixing matrix element',
				   M12BW_n= 1/4*(EE/CW)*(EE/SW)*v**2									      :  'B-W3 mixing matrix element',
				   M22BW_n=   SZW**2*(_n/R)**2 + 1/4*(EE/SW)**2*v**2 					      :  'B-W3 mixing matrix element'.
				   
				   
_n=[1,2,3,4] in parameter  M22CBW_n=  (EE/CW)**2*v**2/(4*SZB**2)					  			      :  '\chi-BB5-WW5 mixing matrix element',
				   M23CBW_n= (EE/CW)*(EE/SW)*v**2/(4*SZB*SZW)						      :  '\chi-BB5-WW5 mixing matrix element',
				   M33CBW_n=  (EE/SW)**2*v**2/(4*SZW**2)								      :  '\chi-BB5-WW5 mixing matrix element'.
				   
_n=[1,2,3,4] in parameter  M11CBW_n=  (_n/R)**2								  				      :  '\chi-BB5-WW5 mixing matrix element after rotation 23',
				   M13CBW_n= (_n/R)*(v/2)*sqrt( (EE/CW)**2/SZB**2 + (EE/SW)**2/SZW**2 )		      :  '\chi-BB5-WW5 mixing matrix element after rotation 23',
				   M33pCBW_n=  v**2*( (EE/CW)**2/SZB**2 + (EE/SW)**2/SZW**2 )/4			      :  '\chi-BB5-WW5 mixing matrix element after rotation 23'.
	
	

/* Mixing angle of B and W3 */
 
_n=[1,2,3,4] in parameter aBW_n=1/2*atan(2*M12BW_n/(M22BW_n-M11BW_n)), sBW_n=sin(aBW_n), cBW_n=cos(aBW_n).				   
_n=[1,2,3,4] in angle sin=sBW_n, cos=cBW_n. 


/* Mixing angles of \chi, BB5 and WW5 */
 
_n=[1,2,3,4] in parameter s23_n=EE/( CW*SZB*sqrt( (EE/CW)**2/SZB**2 + (EE/SW)**2/SZW**2) ), c23_n=EE/( SW*SZW*sqrt( (EE/CW)**2/SZB**2 + (EE/SW)**2/SZW**2) ).				   
_n=[1,2,3,4] in angle sin=s23_n, cos=c23_n.

_n=[1,2,3,4] in parameter s13_n=(_n/R)/sqrt( (_n/R)**2 + (v**2/4)*((EE/CW)**2/SZB**2 + (EE/SW)**2/SZW**2) ) , c13_n=v/2*sqrt((EE/CW)**2/SZB**2 + (EE/SW)**2/SZW**2)/sqrt( (_n/R)**2 + (v**2/4)*((EE/CW)**2/SZB**2 + (EE/SW)**2/SZW**2) ).				   
_n=[1,2,3,4] in angle sin=s13_n, cos=c13_n.


 /* Mixing angles of  the leptons */
 
_n=[1,2,3,4] in parameter aae_n=1/2*atan(2*Me/((ZL+Ze)*(_n)/R))	: 'Mixing angle of the electrons',
				  se_n=sin(aae_n), ce_n=cos(aae_n).								   
_n=[1,2,3,4] in angle sin=se_n, cos=ce_n.

_n=[1,2,3,4] in parameter aam_n=1/2*atan(2*Mmu/((ZL+Ze)*(_n)/R))	: 'Mixing angle of the muons',
				  sm_n=sin(aam_n), cm_n=cos(aam_n).							   
_n=[1,2,3,4] in angle sin=sm_n, cos=cm_n.

_n=[1,2,3,4] in parameter aat_n=1/2*atan(2*Mtau/((ZL+Ze)*(_n)/R))	: 'Mixing angle of the taus',
				  st_n=sin(aat_n), ct_n=cos(aat_n).									
_n=[1,2,3,4] in angle sin=st_n, cos=ct_n.


 /* Mixing angles of the quarks */
 
_n=[1,2,3,4] in parameter aau_n=1/2*atan(2*Mu/((ZQ+Zu)*(_n)/R))	: 'Mixing angle of the u-quarks',
				  su_n=sin(aau_n), cu_n=cos(aau_n).								   
_n=[1,2,3,4] in angle sin=su_n, cos=cu_n.

_n=[1,2,3,4] in parameter aad_n=1/2*atan(2*Md/((ZQ+Zd)*(_n)/R))	: 'Mixing angle of the d-quarks',
				  sd_n=sin(aad_n), cd_n=cos(aad_n).								    
_n=[1,2,3,4] in angle sin=sd_n, cos=cd_n.

_n=[1,2,3,4] in parameter aac_n=1/2*atan(2*Mc/((ZQ+Zu)*(_n)/R))	: 'Mixing angle of the c-quarks',
				  sc_n=sin(aac_n), cc_n=cos(aac_n).								   
_n=[1,2,3,4] in angle sin=sc_n, cos=cc_n.

_n=[1,2,3,4] in parameter aas_n=1/2*atan(2*Ms/((ZQ+Zd)*(_n)/R))	: 'Mixing angle of the s-quarks',
				  ss_n=sin(aas_n), cs_n=cos(aas_n).								    
_n=[1,2,3,4] in angle sin=ss_n, cos=cs_n.

_n=[1,2,3,4] in parameter aatop_n=1/2*atan(2*Mtop/((ZTL+ZtR)*(_n)/R))	: 'Mixing angle of the t-quarks',
				  stop_n=sin(aatop_n), ctop_n=cos(aatop_n).						    
_n=[1,2,3,4] in angle sin=stop_n, cos=ctop_n.

_n=[1,2,3,4] in parameter aab_n=1/2*atan(2*Mb/((ZTL+Zd)*(_n)/R))	: 'Mixing angle of the b-quarks',
				  sb_n=sin(aab_n), cb_n=cos(aab_n).								  
_n=[1,2,3,4] in angle sin=sb_n, cos=cb_n.




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GOLDSTONE MIXING

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

			   
_n=[1,2,3,4] in parameter aG_n = SZB*(s23_n)*sqrt( M11CBW_n+M33pCBW_n )						: 'parameter a for Goldstone mixing',
				  bG_n = SZB*(c23_n)*sqrt( M11CBW_n )									: 'parameter b for Goldstone mixing',
				  cG_n = -SZW*(c23_n)*sqrt( M11CBW_n+M33pCBW_n )					: 'parameter c for Goldstone mixing',
				  dG_n = SZW*(s23_n)*sqrt( M11CBW_n )								: 'parameter d for Goldstone mixing'.  



_n=[1,2,3,4] in parameter a12_n = atan( (bG_n*cBW_n+dG_n*sBW_n)/(aG_n*cBW_n+cG_n*sBW_n) )	: 'Mixing angle of the Goldstones',
				  s12_n=sin(a12_n), c12_n=cos(a12_n).
_n=[1,2,3,4] in angle sin=s12_n, cos=c12_n.


% Complete matrix for the change of base  -->    (\chi, BB5, WW5) = [O23.O13.O12]*(GP, GQ, a)

_n=[1,2,3,4] in let 		  P11_n = c12_n*c13_n,
				  P12_n = -c13_n*s12_n, 
				  P13_n = s13_n,
				  P21_n = c23_n*s12_n + c12_n*s13_n*s23_n,
				  P22_n = c12_n*c23_n - s12_n*s13_n*s23_n,
				  P23_n = - c13_n*s23_n,
				  P31_n = - c12_n*c23_n*s13_n + s12_n*s23_n,
				  P32_n = c23_n*s12_n*s13_n + c12_n*s23_n,
				  P33_n = c13_n*c23_n.
				  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ZERO MODES

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



vector	G/G: (gluon, pdg 21, color c8, gauge),
		A/A: (photon, pdg 22, texname ' \\gamma', gauge),
		Z/Z:('Z boson', pdg 23, mass MZ, width wZ =2.4952, gauge),
		'W+'/'W-': ('W boson', pdg 24, mass MW = MZ*CW, width wW = 2.085, gauge).

spinor 	n1/N1:(neutrino,left, pdg 12, texname ' \\nu_e ', atexname ' \\bar{ \\nu}_e'),
		e1/E1:(electron, pdg 11, mass Me, texname 'e^{-}', atexname 'e^{+}'),
		n2/N2:('mu-neutrino',left, pdg 14, texname ' \\nu_{ \\mu}', atexname ' \\bar{ \\nu}_{ \\mu}'),
		e2/E2:(muon, pdg 13, mass Mmu, texname ' \\mu^{-}', atexname ' \\mu^{+}'),
		n3/N3:('tau-neutrino',left, pdg 16, texname ' \\nu_{ \\tau}', atexname ' \\bar{ \\nu}_{ \\tau}'),
		e3/E3:('tau-lepton', pdg 15, mass Mtau, texname ' \\tau^{-}', atexname ' \\tau^{+}').

spinor	d:('d-quark', pdg 1,color c3, mass Md),
		u:('u-quark', pdg 2,color c3, mass Mu),
		s:('s-quark', pdg 3,color c3, mass Ms),
		c:('c-quark', pdg 4,color c3, mass Mc),
		b:('b-quark', pdg 5,color c3, mass Mb),
		t:('t-quark', pdg 6,color c3, mass Mtop, width wtop = 1.3).

scalar	 H/H:(Higgs, pdg 25, mass MH, width wH = auto).



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% KK EXCITATIONS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



% for each zero mode corresponds 2 KK Dirac spinors which are labelled 1 or 2 (exception made of the neutrinos). They come from the mixing of L and R KK Dirac spinors.
% so the "_x" stands for the label of the KK Dirac fermion. 



_n=[1,3] in vector
		'~G__n'/'~G__n': ('gluon KK_n', color c8, mass MG_n=SZG*(_n/R), width wG__n=auto, texname 'G^{(_n)}', gauge),
		'~P__n'/'~P__n':('P boson KK_n', mass MP_n =sqrt(1/2*(M11BW_n+M22BW_n-(M22BW_n-M11BW_n)/cos(2*aBW_n))), width wP__n=auto, texname 'P^{(_n)}', gauge),
		'~V__n'/'~V__n':('V boson KK_n', mass MV_n=sqrt(1/2*(M11BW_n+M22BW_n+(M22BW_n-M11BW_n)/cos(2*aBW_n))), width wV__n=auto, texname 'V^{(_n)}', gauge),
		'~W+__n'/'~W-__n':('W boson KK_n', mass MW_n=sqrt(SZW**2*(_n/R)**2 +MW**2), width wW__n=auto, texname 'W_{+}^{(_n)}', atexname 'W_{-}^{(_n)}', gauge).

	
_n=[1,3] in spinor 	
		'~e1__n'/'~E1__n':('electron 1 KK_n', mass Me1_n= 1/2*(_n/R)*(-ZL+Ze+(ZL+Ze)/cos(2*aae_n)), width we1__n=auto, texname 'e_{1}^{- \\, (_n)}', atexname 'e_{1}^{+ \\, (_n)}'),
		'~e2__n'/'~E2__n':('electron 2 KK_n', mass Me2_n= 1/2*(_n/R)*(ZL-Ze+(ZL+Ze)/cos(2*aae_n)), width we2__n=auto, texname 'e_{2}^{- \\, (_n)}', atexname 'e_{2}^{+ \\, (_n)}'),
		'~n1__n'/'~N1__n':('neutrino KK_n', mass MneL_n=_n/R*ZL, width wn1__n=auto, texname '\\nu_e^{(_n)}', atexname '\\bar{\\nu}_e^{(_n)}'),
		
		'~mu1__n'/'~Mu1__n':('muon 1 KK_n', mass Mmu1_n = 1/2*(_n/R)*(-ZL+Ze+(ZL+Ze)/cos(2*aam_n)), width wmu1__n=auto, texname '\\mu_{1}^{- \\, (_n)}', atexname '\\mu_{1}^{+ \\, (_n)}'),
		'~mu2__n'/'~Mu2__n':('muon 2 KK_n', mass Mmu2_n = 1/2*(_n/R)*(ZL-Ze+(ZL+Ze)/cos(2*aam_n)), width wmu2__n=auto, texname '\\mu_{2}^{- \\, (_n)}', atexname '\\mu_{2}^{+ \\, (_n)}'),
		'~n2__n'/'~N2__n':('mu-neutrino KK_n', mass MnmL_n=_n/R*ZL, width wn2__n=auto, texname '\\nu_{\\mu}^{(_n)}', atexname '\\bar{\\nu}_{\\mu}^{(_n)}'),
		
		'~tau1__n'/'~Tau1__n':('tau-lepton 1 KK_n', mass Mtau1_n = 1/2*(_n/R)*(-ZL+Ze+(ZL+Ze)/cos(2*aat_n)), width wtau1__n=auto, texname '\\tau_{1}^{- \\, (_n)}', atexname '\\tau_{1}^{+ \\, (_n)}'),
		'~tau2__n'/'~Tau2__n':('tau-lepton 2 KK_n', mass Mtau2_n = 1/2*(_n/R)*(ZL-Ze+(ZL+Ze)/cos(2*aat_n)), width wtau2__n=auto, texname '\\tau_{2}^{- \\, (_n)}', atexname '\\tau_{2}^{+ \\, (_n)}'),
		'~n3__n'/'~N3__n':('tau-neutrino KK_n', mass MntL_n=_n/R*ZL, width wn3__n=auto, texname '\\nu_{\\tau}^{(_n)}', atexname '\\bar{\\nu}_{\\tau}^{(_n)}').


_n=[1,3] in spinor 
		'~d1__n'/'~D1__n':('d-quark 1 KK_n', color c3, mass Md1_n = 1/2*(_n/R)*(-ZQ+Zd+(ZQ+Zd)/cos(2*aad_n)),  width wd1__n=auto , texname 'd_{1}^{(_n)}', atexname '\\bar{d}_{1}^{(_n)}'), 
		'~u1__n'/'~U1__n':('u-quark 1 KK_n', color c3, mass Mu1_n = 1/2*(_n/R)*(-ZQ+Zu+(ZQ+Zu)/cos(2*aau_n)),  width wu1__n=auto , texname 'u_{1}^{(_n)}', atexname '\\bar{u}_{1}^{(_n)}'),        
		'~s1__n'/'~S1__n':('s-quark 1 KK_n', color c3, mass Ms1_n = 1/2*(_n/R)*(-ZQ+Zd+(ZQ+Zd)/cos(2*aas_n)), 	 width ws1__n=auto , texname 's_{1}^{(_n)}', atexname '\\bar{s}_{1}^{(_n)}'),
		'~c1__n'/'~C1__n':('c-quark 1 KK_n', color c3, mass Mc1_n = 1/2*(_n/R)*(-ZQ+Zu+(ZQ+Zu)/cos(2*aac_n)), 	 width wc1__n=auto , texname 'c_{1}^{(_n)}', atexname '\\bar{c}_{1}^{(_n)}'),   
		'~b1__n'/'~B1__n':('b-quark 1 KK_n', color c3, mass Mb1_n = 1/2*(_n/R)*(-ZTL+Zd+(ZTL+Zd)/cos(2*aab_n)),  width wb1__n=auto , texname 'b_{1}^{(_n)}', atexname '\\bar{b}_{1}^{(_n)}'),
		'~t1__n'/'~T1__n':('t-quark 1 KK_n', color c3, mass Mtop1_n = 1/2*(_n/R)*(-ZTL+ZtR+(ZTL+ZtR)/cos(2*aatop_n)),width wt1__n=auto , texname 't_{1}^{(_n)}', atexname '\\bar{t}_{1}^{(_n)}'),

		'~d2__n'/'~D2__n':('d-quark 2 KK_n', color c3, mass Md2_n = 1/2*(_n/R)*(ZQ-Zd+(ZQ+Zd)/cos(2*aad_n)), 	width wd2__n=auto , texname 'd_{2}^{(_n)}', atexname '\\bar{d}_{2}^{(_n)}'), 
		'~u2__n'/'~U2__n':('u-quark 2 KK_n', color c3, mass Mu2_n = 1/2*(_n/R)*(ZQ-Zu+(ZQ+Zu)/cos(2*aau_n)), 	width wu2__n=auto , texname 'u_{2}^{(_n)}', atexname '\\bar{u}_{2}^{(_n)}'),	   
		'~s2__n'/'~S2__n':('s-quark 2 KK_n', color c3, mass Ms2_n = 1/2*(_n/R)*(ZQ-Zd+(ZQ+Zd)/cos(2*aas_n)), 	width ws2__n=auto , texname 's_{2}^{(_n)}', atexname '\\bar{s}_{2}^{(_n)}'),
		'~c2__n'/'~C2__n':('c-quark 2 KK_n', color c3, mass Mc2_n = 1/2*(_n/R)*(ZQ-Zu+(ZQ+Zu)/cos(2*aac_n)), 	width wc2__n=auto , texname 'c_{2}^{(_n)}', atexname '\\bar{c}_{2}^{(_n)}'),   
		'~b2__n'/'~B2__n':('b-quark 2 KK_n', color c3, mass Mb2_n = 1/2*(_n/R)*(ZTL-Zd+(ZTL+Zd)/cos(2*aab_n)), 	width wb2__n=auto , texname 'b_{2}^{(_n)}', atexname '\\bar{b}_{2}^{(_n)}'),
		'~t2__n'/'~T2__n':('t-quark 2 KK_n', color c3, mass Mtop2_n = 1/2*(_n/R)*(ZTL-ZtR+(ZTL+ZtR)/cos(2*aatop_n)), 	width wt2__n=auto , texname 't_{2}^{(_n)}', atexname '\\bar{t}_{2}^{(_n)}').

_n=[1,3] in scalar
		 '~H__n'/'~H__n': ('Higgs KK_n', mass MH_n = sqrt( ((_n)**2/R**2)*ZH+MH**2), width wH__n=auto, texname 'H^{(_n)}'),
		 '~a0__n'/'~a0__n':('neutral scalar KK_n', mass Ma_n = sqrt(ZH*( (_n/R)**2 + (v**2/4)*( (EE/CW)**2/SZB**2 + (EE/SW)**2/SZW**2 ) ) ), width wa0__n=auto, texname 'a_0^{(_n)}'),
		 '~a+__n'/'~a-__n':('charged scalar KK_n', mass Mac_n = sqrt( (ZH/SZW**2)*(SZW**2*(_n/R)**2+MW**2)), width wa__n=auto, texname 'a_{+}^{(_n)}', atexname 'a_{-}^{(_n)}').



_n=[2,4] in vector
		'G__n'/'G__n': ('gluon KK_n', color c8, mass MG_n=SZG*(_n/R), width wG__n=auto, texname 'G^{(_n)}', gauge),
		'P__n'/'P__n':('P boson KK_n', mass MP_n =sqrt(1/2*(M11BW_n+M22BW_n-(M22BW_n-M11BW_n)/cos(2*aBW_n))), width wP__n=auto, texname 'P^{(_n)}', gauge),
		'V__n'/'V__n':('V boson KK_n', mass MV_n=sqrt(1/2*(M11BW_n+M22BW_n+(M22BW_n-M11BW_n)/cos(2*aBW_n))), width wV__n=auto, texname 'V^{(_n)}', gauge),
		'W+__n'/'W-__n':('W boson KK_n', mass MW_n=sqrt(SZW**2*(_n/R)**2 +MW**2), width wW__n=auto, texname 'W_{+}^{(_n)}', atexname 'W_{-}^{(_n)}', gauge).
	
_n=[2,4] in spinor 	
		'e1__n'/'E1__n':('electron 1 KK_n', mass Me1_n= 1/2*(_n/R)*(-ZL+Ze+(ZL+Ze)/cos(2*aae_n)), width we1__n=auto, texname 'e_{1}^{- \\, (_n)}', atexname 'e_{1}^{+ \\, (_n)}'),
		'e2__n'/'E2__n':('electron 2 KK_n', mass Me2_n= 1/2*(_n/R)*(ZL-Ze+(ZL+Ze)/cos(2*aae_n)), width we2__n=auto, texname 'e_{2}^{- \\, (_n)}', atexname 'e_{2}^{+ \\, (_n)}'),
		'n1__n'/'N1__n':('neutrino KK_n', mass MneL_n=_n/R*ZL, width wn1__n=auto, texname '\\nu_e^{(_n)}', atexname '\\bar{\\nu}_e^{(_n)}'),
		
		'mu1__n'/'Mu1__n':('muon 1 KK_n', mass Mmu1_n = 1/2*(_n/R)*(-ZL+Ze+(ZL+Ze)/cos(2*aam_n)), width wmu1__n=auto, texname '\\mu_{1}^{- \\, (_n)}', atexname '\\mu_{1}^{+ \\, (_n)}'),
		'mu2__n'/'Mu2__n':('muon 2 KK_n', mass Mmu2_n = 1/2*(_n/R)*(ZL-Ze+(ZL+Ze)/cos(2*aam_n)), width wmu2__n=auto, texname '\\mu_{2}^{- \\, (_n)}', atexname '\\mu_{2}^{+ \\, (_n)}'),
		'n2__n'/'N2__n':('mu-neutrino KK_n', mass MnmL_n=_n/R*ZL, width wn2__n=auto, texname '\\nu_{\\mu}^{(_n)}', atexname '\\bar{\\nu}_{\\mu}^{(_n)}'),
		
		'tau1__n'/'Tau1__n':('tau-lepton 1 KK_n', mass Mtau1_n = 1/2*(_n/R)*(-ZL+Ze+(ZL+Ze)/cos(2*aat_n)), width wtau1__n=auto, texname '\\tau_{1}^{- \\, (_n)}', atexname '\\tau_{1}^{+ \\, (_n)}'),
		'tau2__n'/'Tau2__n':('tau-lepton 2 KK_n', mass Mtau2_n = 1/2*(_n/R)*(ZL-Ze+(ZL+Ze)/cos(2*aat_n)), width wtau2__n=auto, texname '\\tau_{2}^{- \\, (_n)}', atexname '\\tau_{2}^{+ \\, (_n)}'),
		'n3__n'/'N3__n':('tau-neutrino KK_n', mass MntL_n=_n/R*ZL, width wn3__n=auto, texname '\\nu_{\\tau}^{(_n)}', atexname '\\bar{\\nu}_{\\tau}^{(_n)}').


_n=[2,4] in spinor 
		'd1__n'/'D1__n':('d-quark 1 KK_n', color c3, mass Md1_n = 1/2*(_n/R)*(-ZQ+Zd+(ZQ+Zd)/cos(2*aad_n)),  width wd1__n=auto , texname 'd_{1}^{(_n)}', atexname '\\bar{d}_{1}^{(_n)}'), 
		'u1__n'/'U1__n':('u-quark 1 KK_n', color c3, mass Mu1_n = 1/2*(_n/R)*(-ZQ+Zu+(ZQ+Zu)/cos(2*aau_n)),  width wu1__n=auto , texname 'u_{1}^{(_n)}', atexname '\\bar{u}_{1}^{(_n)}'),        
		's1__n'/'S1__n':('s-quark 1 KK_n', color c3, mass Ms1_n = 1/2*(_n/R)*(-ZQ+Zd+(ZQ+Zd)/cos(2*aas_n)), 	 width ws1__n=auto , texname 's_{1}^{(_n)}', atexname '\\bar{s}_{1}^{(_n)}'),
		'c1__n'/'C1__n':('c-quark 1 KK_n', color c3, mass Mc1_n = 1/2*(_n/R)*(-ZQ+Zu+(ZQ+Zu)/cos(2*aac_n)), 	 width wc1__n=auto , texname 'c_{1}^{(_n)}', atexname '\\bar{c}_{1}^{(_n)}'),   
		'b1__n'/'B1__n':('b-quark 1 KK_n', color c3, mass Mb1_n = 1/2*(_n/R)*(-ZTL+Zd+(ZTL+Zd)/cos(2*aab_n)),  width wb1__n=auto , texname 'b_{1}^{(_n)}', atexname '\\bar{b}_{1}^{(_n)}'),
		't1__n'/'T1__n':('t-quark 1 KK_n', color c3, mass Mtop1_n = 1/2*(_n/R)*(-ZTL+ZtR+(ZTL+ZtR)/cos(2*aatop_n)),width wt1__n=auto , texname 't_{1}^{(_n)}', atexname '\\bar{t}_{1}^{(_n)}'),

		'd2__n'/'D2__n':('d-quark 2 KK_n', color c3, mass Md2_n = 1/2*(_n/R)*(ZQ-Zd+(ZQ+Zd)/cos(2*aad_n)), 	width wd2__n=auto , texname 'd_{2}^{(_n)}', atexname '\\bar{d}_{2}^{(_n)}'), 
		'u2__n'/'U2__n':('u-quark 2 KK_n', color c3, mass Mu2_n = 1/2*(_n/R)*(ZQ-Zu+(ZQ+Zu)/cos(2*aau_n)), 	width wu2__n=auto , texname 'u_{2}^{(_n)}', atexname '\\bar{u}_{2}^{(_n)}'),	   
		's2__n'/'S2__n':('s-quark 2 KK_n', color c3, mass Ms2_n = 1/2*(_n/R)*(ZQ-Zd+(ZQ+Zd)/cos(2*aas_n)), 	width ws2__n=auto , texname 's_{2}^{(_n)}', atexname '\\bar{s}_{2}^{(_n)}'),
		'c2__n'/'C2__n':('c-quark 2 KK_n', color c3, mass Mc2_n = 1/2*(_n/R)*(ZQ-Zu+(ZQ+Zu)/cos(2*aac_n)), 	width wc2__n=auto , texname 'c_{2}^{(_n)}', atexname '\\bar{c}_{2}^{(_n)}'),   
		'b2__n'/'B2__n':('b-quark 2 KK_n', color c3, mass Mb2_n = 1/2*(_n/R)*(ZTL-Zd+(ZTL+Zd)/cos(2*aab_n)), 	width wb2__n=auto , texname 'b_{2}^{(_n)}', atexname '\\bar{b}_{2}^{(_n)}'),
		't2__n'/'T2__n':('t-quark 2 KK_n', color c3, mass Mtop2_n = 1/2*(_n/R)*(ZTL-ZtR+(ZTL+ZtR)/cos(2*aatop_n)), 	width wt2__n=auto , texname 't_{2}^{(_n)}', atexname '\\bar{t}_{2}^{(_n)}').

_n=[2,4] in scalar
		 'H__n'/'H__n': ('Higgs KK_n', mass MH_n = sqrt( ((_n)**2/R**2)*ZH+MH**2), width wH__n=auto, texname 'H^{(_n)}'),
		 'a0__n'/'a0__n':('neutral scalar KK_n', mass Ma_n = sqrt(ZH*( (_n/R)**2 + (v**2/4)*( (EE/CW)**2/SZB**2 + (EE/SW)**2/SZW**2 ) ) ), width wa0__n=auto, texname 'a_0^{(_n)}'),
		 'a+__n'/'a-__n':('charged scalar KK_n', mass Mac_n = sqrt( (ZH/SZW**2)*(SZW**2*(_n/R)**2+MW**2)), width wa__n=auto, texname 'a_{+}^{(_n)}', atexname 'a_{-}^{(_n)}').




prtcprop pdg:('~G_1'=100021,'G_2'=200021,'~P_1'=100022,'P_2'=200022,'~V_1'=100023,'V_2'=200023,'~W+_1'=100024,'W+_2'=200024).
prtcprop pdg:('~n1_1'=100012,'n1_2'=200012,'~n2_1'=100014,'n2_2'=200014,'~n3_1'=100016,'n3_2'=200016).
prtcprop pdg:('~e1_1'=101011,'e1_2'=201011,'~e2_1'=102011,'e2_2'=202011).
prtcprop pdg:('~mu1_1'=101013,'mu1_2'=201013,'~mu2_1'=102013,'mu2_2'=202013).
prtcprop pdg:('~tau1_1'=101015,'tau1_2'=201015,'~tau2_1'=102015,'tau2_2'=202015).
prtcprop pdg:('~d1_1'=101001,'d1_2'=201001,'~d2_1'=102001,'d2_2'=202001).
prtcprop pdg:('~u1_1'=101002,'u1_2'=201002,'~u2_1'=102002,'u2_2'=202002).
prtcprop pdg:('~s1_1'=101003,'s1_2'=201003,'~s2_1'=102003,'s2_2'=202003).
prtcprop pdg:('~c1_1'=101004,'c1_2'=201004,'~c2_1'=102004,'c2_2'=202004).
prtcprop pdg:('~b1_1'=101005,'b1_2'=201005,'~b2_1'=102005,'b2_2'=202005).
prtcprop pdg:('~t1_1'=101006,'t1_2'=201006,'~t2_1'=102006,'t2_2'=202006).
prtcprop pdg:('~H_1'=100025,'H_2'=200025,'~a0_1'=100026,'a0_2'=200026,'~a+_1'=100027,'a+_2'=200027).


prtcprop pdg:('~G_3'=300021,'G_4'=400021,'~P_3'=300022,'P_4'=400022,'~V_3'=300023,'V_4'=400023,'~W+_3'=300024,'W+_4'=400024).
prtcprop pdg:('~n1_3'=300012,'n1_4'=400012,'~n2_3'=300014,'n2_4'=400014,'~n3_3'=300016,'n3_4'=400016).
prtcprop pdg:('~e1_3'=301011,'e1_4'=401011,'~e2_3'=302011,'e2_4'=402011).
prtcprop pdg:('~mu1_3'=301013,'mu1_4'=401013,'~mu2_3'=302013,'mu2_4'=402013).
prtcprop pdg:('~tau1_3'=301015,'tau1_4'=401015,'~tau2_3'=302015,'tau2_4'=402015).
prtcprop pdg:('~d1_3'=301001,'d1_4'=401001,'~d2_3'=302001,'d2_4'=402001).
prtcprop pdg:('~u1_3'=301002,'u1_4'=401002,'~u2_3'=302002,'u2_4'=402002).
prtcprop pdg:('~s1_3'=301003,'s1_4'=401003,'~s2_3'=302003,'s2_4'=402003).
prtcprop pdg:('~c1_3'=301004,'c1_4'=401004,'~c2_3'=302004,'c2_4'=402004).
prtcprop pdg:('~b1_3'=301005,'b1_4'=401005,'~b2_3'=302005,'b2_4'=402005).
prtcprop pdg:('~t1_3'=301006,'t1_4'=401006,'~t2_3'=302006,'t2_4'=402006).
prtcprop pdg:('~H_3'=300025,'H_4'=400025,'~a0_3'=300026,'a0_4'=400026,'~a+_3'=300027,'a+_4'=400027).


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% RECONSTRUCTION OF "LEFT" AND "RIGHT" KK FERMIONS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


_n=[1,3], _x=[1,2] in let 'e_x__n'='~e_x__n', 'E_x__n'='~E_x__n'.
_n=[1,3], _x=[1,2] in let 'mu_x__n'='~mu_x__n', 'Mu_x__n'='~Mu_x__n'.
_n=[1,3], _x=[1,2] in let 'tau_x__n'='~tau_x__n', 'Tau_x__n'='~Tau_x__n'.
_n=[1,3], _x=[1,2] in let 'd_x__n'='~d_x__n', 'D_x__n'='~D_x__n'.
_n=[1,3], _x=[1,2] in let 'u_x__n'='~u_x__n', 'U_x__n'='~U_x__n'.
_n=[1,3], _x=[1,2] in let 's_x__n'='~s_x__n', 'S_x__n'='~S_x__n'.
_n=[1,3], _x=[1,2] in let 'c_x__n'='~c_x__n', 'C_x__n'='~C_x__n'.
_n=[1,3], _x=[1,2] in let 'b_x__n'='~b_x__n', 'B_x__n'='~B_x__n'.
_n=[1,3], _x=[1,2] in let 't_x__n'='~t_x__n', 'T_x__n'='~T_x__n'.
_n=[1,3] in let 'H__n'='~H__n'.
_n=[1,3] in let 'a0__n'='~a0__n'.
_n=[1,3] in let 'a+__n'='~a+__n', 'a-__n'='~a-__n'.
_n=[1,3] in let 'W+__n'='~W+__n', 'W-__n'='~W-__n'.
_n=[1,3] in let 'G__n'='~G__n'.
_n=[1,3] in let 'P__n'='~P__n'.
_n=[1,3] in let 'V__n'='~V__n'.
_n=[1,3], _x=[1,2,3] in let 'n_x__n'='~n_x__n', 'N_x__n'='~N_x__n'.



% the index 1,2,3 for the leptons labels the generation 


_n=[1,2,3,4] in let 'e1L__n'=ce_n*'e2__n'+se_n*gamma5*'e1__n', 'E1L__n'=anti('e1L__n'),
		       'e1R__n'=se_n*'e2__n'-ce_n*gamma5*'e1__n', 'E1R__n'=anti('e1R__n').

_n=[1,2,3,4] in let 'e2L__n'=cm_n*'mu2__n'+sm_n*gamma5*'mu1__n', 'E2L__n'=anti('e2L__n'),
		       'e2R__n'=sm_n*'mu2__n'-cm_n*gamma5*'mu1__n', 'E2R__n'=anti('e2R__n').

_n=[1,2,3,4] in let 'e3L__n'=ct_n*'tau2__n'+st_n*gamma5*'tau1__n', 'E3L__n'=anti('e3L__n'), 
		       'e3R__n'=st_n*'tau2__n'-ct_n*gamma5*'tau1__n', 'E3R__n'=anti('e3R__n').

_n=[1,2,3,4] in let 'uL__n'=cu_n*'u2__n'+su_n*gamma5*'u1__n', 'UL__n'=anti('uL__n'), 
		       'uR__n'=su_n*'u2__n'-cu_n*gamma5*'u1__n', 'UR__n'=anti('uR__n').

_n=[1,2,3,4] in let 'dL__n'=cd_n*'d2__n'+sd_n*gamma5*'d1__n', 'DL__n'=anti('dL__n'), 
		       'dR__n'=sd_n*'d2__n'-cd_n*gamma5*'d1__n', 'DR__n'=anti('dR__n').

_n=[1,2,3,4] in let 'cL__n'=cc_n*'c2__n'+sc_n*gamma5*'c1__n', 'CL__n'=anti('cL__n'), 
		       'cR__n'=sc_n*'c2__n'-cc_n*gamma5*'c1__n', 'CR__n'=anti('cR__n').

_n=[1,2,3,4] in let 'sL__n'=cs_n*'s2__n'+ss_n*gamma5*'s1__n', 'SL__n'=anti('sL__n'), 
		       'sR__n'=ss_n*'s2__n'-cs_n*gamma5*'s1__n', 'SR__n'=anti('sR__n').

_n=[1,2,3,4] in let 'tL__n'=ctop_n*'t2__n'+stop_n*gamma5*'t1__n', 'TL__n'=anti('tL__n'), 
		       'tR__n'=stop_n*'t2__n'-ctop_n*gamma5*'t1__n', 'TR__n'=anti('tR__n').

_n=[1,2,3,4] in let 'bL__n'=cb_n*'b2__n'+sb_n*gamma5*'b1__n', 'BL__n'=anti('bL__n'), 
		       'bR__n'=sb_n*'b2__n'-cb_n*gamma5*'b1__n', 'BR__n'=anti('bR__n').



let n1L = PL*n1*cos(0) + ( PL*'n1_1'*cos(1) + PR*'n1_1'*sin(1) + PL*'n1_2'*cos(2) + PR*'n1_2'*sin(2) +PL*'n1_3'*cos(3) + PR*'n1_3'*sin(3) + PL*'n1_4'*cos(4) + PR*'n1_4'*sin(4) )*Sqrt2, N1L=anti(n1L).
let n2L = PL*n2*cos(0) + ( PL*'n2_1'*cos(1) + PR*'n2_1'*sin(1) + PL*'n2_2'*cos(2) + PR*'n2_2'*sin(2) +PL*'n2_3'*cos(3) + PR*'n2_3'*sin(3) + PL*'n2_4'*cos(4) + PR*'n2_4'*sin(4) )*Sqrt2, N2L=anti(n2L).
let n3L = PL*n3*cos(0) + ( PL*'n3_1'*cos(1) + PR*'n3_1'*sin(1) + PL*'n3_2'*cos(2) + PR*'n3_2'*sin(2) +PL*'n3_3'*cos(3) + PR*'n3_3'*sin(3) + PL*'n3_4'*cos(4) + PR*'n3_4'*sin(4) )*Sqrt2, N3L=anti(n3L).

let e1L = PL*e1*cos(0) + ( PL*'e1L_1'*cos(1) + PR*'e1L_1'*sin(1) + PL*'e1L_2'*cos(2) + PR*'e1L_2'*sin(2) +PL*'e1L_3'*cos(3) + PR*'e1L_3'*sin(3) + PL*'e1L_4'*cos(4) + PR*'e1L_4'*sin(4) )*Sqrt2, E1L=anti(e1L).
let e2L = PL*e2*cos(0) + ( PL*'e2L_1'*cos(1) + PR*'e2L_1'*sin(1) + PL*'e2L_2'*cos(2) + PR*'e2L_2'*sin(2) +PL*'e2L_3'*cos(3) + PR*'e2L_3'*sin(3) + PL*'e2L_4'*cos(4) + PR*'e2L_4'*sin(4) )*Sqrt2, E2L=anti(e2L).
let e3L = PL*e3*cos(0) + ( PL*'e3L_1'*cos(1) + PR*'e3L_1'*sin(1) + PL*'e3L_2'*cos(2) + PR*'e3L_2'*sin(2) +PL*'e3L_3'*cos(3) + PR*'e3L_3'*sin(3) + PL*'e3L_4'*cos(4) + PR*'e3L_4'*sin(4) )*Sqrt2, E3L=anti(e3L).
let e1R = PR*e1*cos(0) + ( PR*'e1R_1'*cos(1) + PL*'e1R_1'*sin(1) + PR*'e1R_2'*cos(2) + PL*'e1R_2'*sin(2) +PR*'e1R_3'*cos(3) + PL*'e1R_3'*sin(3) + PR*'e1R_4'*cos(4) + PL*'e1R_4'*sin(4) )*Sqrt2, E1R=anti(e1R).
let e2R = PR*e2*cos(0) + ( PR*'e2R_1'*cos(1) + PL*'e2R_1'*sin(1) + PR*'e2R_2'*cos(2) + PL*'e2R_2'*sin(2) +PR*'e2R_3'*cos(3) + PL*'e2R_3'*sin(3) + PR*'e2R_4'*cos(4) + PL*'e2R_4'*sin(4) )*Sqrt2, E2R=anti(e2R).
let e3R = PR*e3*cos(0) + ( PR*'e3R_1'*cos(1) + PL*'e3R_1'*sin(1) + PR*'e3R_2'*cos(2) + PL*'e3R_2'*sin(2) +PR*'e3R_3'*cos(3) + PL*'e3R_3'*sin(3) + PR*'e3R_4'*cos(4) + PL*'e3R_4'*sin(4) )*Sqrt2, E3R=anti(e3R).


let uL = PL*u*cos(0) + ( PL*'uL_1'*cos(1) + PR*'uL_1'*sin(1) + PL*'uL_2'*cos(2) + PR*'uL_2'*sin(2) +PL*'uL_3'*cos(3) + PR*'uL_3'*sin(3) + PL*'uL_4'*cos(4) + PR*'uL_4'*sin(4) )*Sqrt2, UL=anti(uL).
let dL = PL*d*cos(0) + ( PL*'dL_1'*cos(1) + PR*'dL_1'*sin(1) + PL*'dL_2'*cos(2) + PR*'dL_2'*sin(2) +PL*'dL_3'*cos(3) + PR*'dL_3'*sin(3) + PL*'dL_4'*cos(4) + PR*'dL_4'*sin(4) )*Sqrt2, DL=anti(dL).
let cL = PL*c*cos(0) + ( PL*'cL_1'*cos(1) + PR*'cL_1'*sin(1) + PL*'cL_2'*cos(2) + PR*'cL_2'*sin(2) +PL*'cL_3'*cos(3) + PR*'cL_3'*sin(3) + PL*'cL_4'*cos(4) + PR*'cL_4'*sin(4) )*Sqrt2, CL=anti(cL).
let sL = PL*s*cos(0) + ( PL*'sL_1'*cos(1) + PR*'sL_1'*sin(1) + PL*'sL_2'*cos(2) + PR*'sL_2'*sin(2) +PL*'sL_3'*cos(3) + PR*'sL_3'*sin(3) + PL*'sL_4'*cos(4) + PR*'sL_4'*sin(4) )*Sqrt2, SL=anti(sL).
let tL = PL*t*cos(0) + ( PL*'tL_1'*cos(1) + PR*'tL_1'*sin(1) + PL*'tL_2'*cos(2) + PR*'tL_2'*sin(2) +PL*'tL_3'*cos(3) + PR*'tL_3'*sin(3) + PL*'tL_4'*cos(4) + PR*'tL_4'*sin(4) )*Sqrt2, TL=anti(tL).
let bL = PL*b*cos(0) + ( PL*'bL_1'*cos(1) + PR*'bL_1'*sin(1) + PL*'bL_2'*cos(2) + PR*'bL_2'*sin(2) +PL*'bL_3'*cos(3) + PR*'bL_3'*sin(3) + PL*'bL_4'*cos(4) + PR*'bL_4'*sin(4)  )*Sqrt2, BL=anti(bL).

let uR = PR*u*cos(0) + ( PR*'uR_1'*cos(1) + PL*'uR_1'*sin(1) + PR*'uR_2'*cos(2) + PL*'uR_2'*sin(2) +PR*'uR_3'*cos(3) + PL*'uR_3'*sin(3) + PR*'uR_4'*cos(4) + PL*'uR_4'*sin(4) )*Sqrt2, UR=anti(uR).
let dR = PR*d*cos(0) + ( PR*'dR_1'*cos(1) + PL*'dR_1'*sin(1) + PR*'dR_2'*cos(2) + PL*'dR_2'*sin(2) +PR*'dR_3'*cos(3) + PL*'dR_3'*sin(3) + PR*'dR_4'*cos(4) + PL*'dR_4'*sin(4) )*Sqrt2, DR=anti(dR).
let cR = PR*c*cos(0) + ( PR*'cR_1'*cos(1) + PL*'cR_1'*sin(1) + PR*'cR_2'*cos(2) + PL*'cR_2'*sin(2) +PR*'cR_3'*cos(3) + PL*'cR_3'*sin(3) + PR*'cR_4'*cos(4) + PL*'cR_4'*sin(4) )*Sqrt2, CR=anti(cR).
let sR = PR*s*cos(0) + ( PR*'sR_1'*cos(1) + PL*'sR_1'*sin(1) + PR*'sR_2'*cos(2) + PL*'sR_2'*sin(2) +PR*'sR_3'*cos(3) + PL*'sR_3'*sin(3) + PR*'sR_4'*cos(4) + PL*'sR_4'*sin(4) )*Sqrt2, SR=anti(sR).
let tR = PR*t*cos(0) + ( PR*'tR_1'*cos(1) + PL*'tR_1'*sin(1) + PR*'tR_2'*cos(2) + PL*'tR_2'*sin(2) +PR*'tR_3'*cos(3) + PL*'tR_3'*sin(3) + PR*'tR_4'*cos(4) + PL*'tR_4'*sin(4) )*Sqrt2, TR=anti(tR).
let bR = PR*b*cos(0) + ( PR*'bR_1'*cos(1) + PL*'bR_1'*sin(1) + PR*'bR_2'*cos(2) + PL*'bR_2'*sin(2) +PR*'bR_3'*cos(3) + PL*'bR_3'*sin(3) + PR*'bR_4'*cos(4) + PL*'bR_4'*sin(4) )*Sqrt2, BR=anti(bR).



let l1={n1L,e1L}, L1={N1L,E1L}.
let l2={n2L,e2L}, L2={N2L,E2L}.
let l3={n3L,e3L}, L3={N3L,E3L}.


let q1={uL,dL}, Q1={UL,DL}, q1a={uL,Vud*dL+Vus*sL+Vub*bL}, Q1a={UL,Vud*DL+Vus*SL+Vub*BL}.
let q2={cL,sL}, Q2={CL,SL}, q2a={cL,Vcd*dL+Vcs*sL+Vcb*bL}, Q2a={CL,Vcd*DL+Vcs*SL+Vcb*BL}. 
let q3={tL,bL}, Q3={TL,BL}, q3a={tL,Vtd*dL+Vts*sL+Vtb*bL}, Q3a={TL,Vtd*DL+Vts*SL+Vtb*BL}.



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% RECONSTRUCTION OF THE 5D BOSONS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%%%%%%%%%%%%%%
% First, the 5th components of the gauge bosons and the scalars 
% NOTE : All the A5 fields here are the true 5th components, note the rescaled ones i.e they don't have canonical kinetic term
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


_n=[1,3] in let	'W+5__n'  = (_n/R*SZW*'~W+__n.f' + MW*'~a+__n')/(MW_n*SZW),
			'W-5__n'  = (_n/R*SZW*'~W-__n.f' + MW*'~a-__n')/(MW_n*SZW),
			'Chi+__n' = (-(_n/R*SZW*'~a+__n') + MW*'~W+__n.f')/MW_n,
			'Chi-__n' = (-(_n/R*SZW*'~a-__n') + MW*'~W-__n.f')/MW_n,
			'Chi0__n' = -(P11_n*'~P__n.f' + P12_n*'~V__n.f' + P13_n*'~a0__n'),
			'B5__n' = (P21_n*'~P__n.f' + P22_n*'~V__n.f' + P23_n*'~a0__n')/SZB,
			'W35__n' = (P31_n*'~P__n.f' + P32_n*'~V__n.f' + P33_n*'~a0__n')/SZW.


_n=[2,4] in let	'W+5__n'  = (_n/R*SZW*'W+__n.f' + MW*'a+__n')/(MW_n*SZW),
			'W-5__n'  = (_n/R*SZW*'W-__n.f' + MW*'a-__n')/(MW_n*SZW),
			'Chi+__n' = (-(_n/R*SZW*'a+__n') + MW*'W+__n.f')/MW_n,
			'Chi-__n' = (-(_n/R*SZW*'a-__n') + MW*'W-__n.f')/MW_n,
			'Chi0__n' = -(P11_n*'P__n.f' + P12_n*'V__n.f' + P13_n*'a0__n'),
			'B5__n' = (P21_n*'P__n.f' + P22_n*'V__n.f' + P23_n*'a0__n')/SZB,
			'W35__n' = (P31_n*'P__n.f' + P32_n*'V__n.f' + P33_n*'a0__n')/SZW.

				
let	'Chi+' = 'W+.f'*cos(0) + Sqrt2*('Chi+_1'*cos(1) + 'Chi+_2'*cos(2)+'Chi+_3'*cos(3) + 'Chi+_4'*cos(4)),
	'Chi-' = 'W-.f'*cos(0) + Sqrt2*('Chi-_1'*cos(1) + 'Chi-_2'*cos(2)+'Chi-_3'*cos(3) + 'Chi-_4'*cos(4)),
	'Chi0' = 'Z.f'*cos(0) + Sqrt2*('Chi0_1'*cos(1) + 'Chi0_2'*cos(2)+'Chi0_3'*cos(3) + 'Chi0_4'*cos(4)),
	G5 = ('~G_1.f'*sin(1)+'G_2.f'*sin(2)+'~G_3.f'*sin(3)+'G_4.f'*sin(4))*Sqrt2/SZG.


let	'W+5' = Sqrt2*('W+5_1'*sin(1) + 'W+5_2'*sin(2)+'W+5_3'*sin(3) + 'W+5_4'*sin(4)), 
	'W-5' = Sqrt2*('W-5_1'*sin(1) + 'W-5_2'*sin(2)+'W-5_3'*sin(3) + 'W-5_4'*sin(4)),
 	B5 = ('B5_1'*sin(1) + 'B5_2'*sin(2)+'B5_3'*sin(3) + 'B5_4'*sin(4))*Sqrt2,
	W35 = ('W35_1'*sin(1) + 'W35_2'*sin(2)+'W35_3'*sin(3) + 'W35_4'*sin(4))*Sqrt2.


let	 W15= ('W+5' + 'W-5')/Sqrt2, W25 = i*('W+5' - 'W-5')/Sqrt2.
let	 WW15 = {W15 , W25 , W35}.
let	 WW5 = {'W+5' , W35 , 'W-5'}.
let	 WWW5 = {'W-5' , W35 , 'W+5'}.



%%%%%%%%%%%%%%
% Second, the gauge bosons themselves and the Higgs. We do not need to define a 5D field "a" (same applies to a+ or a-) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

_n=[1,2,3,4] in let B_n = cBW_n*'P__n' - sBW_n*'V__n',
		       W3_n = sBW_n*'P__n' + cBW_n*'V__n'.

let	 BB = (-SW*Z + CW*A)*cos(0) + (B1*cos(1) + B2*cos(2)+B3*cos(3) + B4*cos(4))*Sqrt2,
	 W3 = (CW*Z+SW*A)*cos(0) + (W31*cos(1) + W32*cos(2)+W33*cos(3) + W34*cos(4))*Sqrt2,
	 Gtot = G*cos(0) + ('G_1'*cos(1) + 'G_2'*cos(2)+'G_3'*cos(3) + 'G_4'*cos(4))*Sqrt2.

transform  H -> H*cos(0) + ('H_1'*cos(1) + 'H_2'*cos(2)+'H_3'*cos(3) + 'H_4'*cos(4))*Sqrt2,
		'W+' -> 'W+'*cos(0) + ('W+_1'*cos(1) + 'W+_2'*cos(2)+'W+_3'*cos(3) + 'W+_4'*cos(4))*Sqrt2,
		'W-' -> 'W-'*cos(0) + ('W-_1'*cos(1) + 'W-_2'*cos(2)+'W-_3'*cos(3) + 'W-_4'*cos(4))*Sqrt2.
  							
let	 W1= ('W+'+'W-')/Sqrt2, W2 = i*('W+'-'W-')/Sqrt2, WW1 = {W1,  W2 , W3}, WW = {'W+' , W3 , 'W-'}, WWW = {'W-' , W3 , 'W+'}.


%%%%%%%%%%%%%%
% Finally the ghosts 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


let	 ghG = 'G.c'*cos(0) + ('~G_1.c'*cos(1) + 'G_2.c'*cos(2)+'~G_3.c'*cos(3) + 'G_4.c'*cos(4))*Sqrt2,
	 GhG = 'G.C'*cos(0) + ('~G_1.C'*cos(1) + 'G_2.C'*cos(2)+'~G_3.C'*cos(3) + 'G_4.C'*cos(4))*Sqrt2.


let	 'gh+' = 'W+.c'*cos(0) + ('~W+_1.c'*cos(1) + 'W+_2.c'*cos(2)+'~W+_3.c'*cos(3) + 'W+_4.c'*cos(4))*Sqrt2,
	 'Gh+' = 'W+.C'*cos(0) + ('~W+_1.C'*cos(1) + 'W+_2.C'*cos(2)+'~W+_3.C'*cos(3) + 'W+_4.C'*cos(4))*Sqrt2,
	 'gh-' = 'W-.c'*cos(0) + ('~W-_1.c'*cos(1) + 'W-_2.c'*cos(2)+'~W-_3.c'*cos(3) + 'W-_4.c'*cos(4))*Sqrt2,
	 'Gh-' = 'W-.C'*cos(0) + ('~W-_1.C'*cos(1) + 'W-_2.C'*cos(2)+'~W-_3.C'*cos(3) + 'W-_4.C'*cos(4))*Sqrt2.


let 	gh1 = ('gh+'+'gh-')/Sqrt2, gh2= i*('gh+'-'gh-')/Sqrt2,
	Gh1 = ('Gh+'+'Gh-')/Sqrt2, Gh2= i*('Gh+'-'Gh-')/Sqrt2.

_n=[1,3] in let 	'ghY_n' = cBW_n*'~P__n.c' - sBW_n*'~V__n.c',
			'GhY_n' = cBW_n*'~P__n.C' - sBW_n*'~V__n.C',
			'gh3_n' = sBW_n*'~P__n.c' + cBW_n*'~V__n.c',
			'Gh3_n' = sBW_n*'~P__n.C' + cBW_n*'~V__n.C'.

_n=[2,4] in let	'ghY_n' = cBW_n*'P__n.c' - sBW_n*'V__n.c',
			'GhY_n' = cBW_n*'P__n.C' - sBW_n*'V__n.C',
			'gh3_n' = sBW_n*'P__n.c' + cBW_n*'V__n.c',
			'Gh3_n' = sBW_n*'P__n.C' + cBW_n*'V__n.C'.

let 	gh3 = (CW*'Z.c'+SW*'A.c')*cos(0) + ('gh31'*cos(1) + 'gh32'*cos(2) +'gh33'*cos(3) + 'gh34'*cos(4) )*Sqrt2, 
	Gh3 = (CW*'Z.C'+SW*'A.C')*cos(0) + ('Gh31'*cos(1) + 'Gh32'*cos(2) +'Gh33'*cos(3) + 'Gh34'*cos(4) )*Sqrt2,
	ghY = (-SW*'Z.c' + CW*'A.c')*cos(0) +  ('ghY1'*cos(1) + 'ghY2'*cos(2) +'ghY3'*cos(3) + 'ghY4'*cos(4) )*Sqrt2,
	GhY =  (-SW*'Z.C' + CW*'A.C')*cos(0) + ('GhY1'*cos(1) + 'GhY2'*cos(2) +'GhY3'*cos(3) + 'GhY4'*cos(4) )*Sqrt2.

let 	gh={gh1,gh2,gh3},
	Gh={Gh1,Gh2,Gh3}.  

let 	gol1 =  ('Chi+'+'Chi-')/Sqrt2, gol2= i*('Chi+'-'Chi-')/Sqrt2, gol3= 'Chi0'.


%%%%%%%%%%%%%%
% And the Higgs 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

let	 phi = {i*'Chi+',(vev(2*MW/EE*SW) + H - i*'Chi0')/Sqrt2}, Phi = {-i*'Chi-',(vev(2*MW/EE*SW) + H + i*'Chi0')/Sqrt2}.




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% LAGRANGIAN

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


% HIGGS LAGRANGIAN



let 	Dphi^mu^a = (deriv^mu + i*(EE/CW)/2*BB^mu)*phi^a + i*(EE/SW)/2*taupm^a^b^c*WW^mu^c*phi^b,
	Dphi5^a = (deriv5/R + i*(EE/CW)/2*B5)*phi^a + i*(EE/SW)/2*taupm^a^b^c*WW5^c*phi^b,
	DPhi^mu^a = (deriv^mu - i*(EE/CW)/2*BB^mu)*Phi^a - i*(EE/SW)/2*taupm^a^b^c*WWW^mu^c*Phi^b,
	DPhi5^a = (deriv5/R - i*(EE/CW)/2*B5)*Phi^a - i*(EE/SW)/2*taupm^a^b^c*WWW5^c*Phi^b.

lterm 	DPhi*Dphi.
lterm 	-ZH*DPhi5*Dphi5.


lterm 	-2*lambdaH*(phi*Phi-v**2/2)**2  where 
	lambdaH=(EE/SW*MH/MW)**2/16, v=2*MW*SW/EE.



% GAUGE KINETIC TERMS


lterm 	-F**2/4  where F=deriv^mu*BB^nu-deriv^nu*BB^mu.

lterm 	1/2*SZB**2*FB**2 where FB=deriv5/R*BB^nu - deriv^nu*B5.

lterm 	-F**2/4  where F=deriv^mu*WW1^nu^a-deriv^nu*WW1^mu^a -(EE/SW)*eps^a^b^c*WW1^mu^b*WW1^nu^c.

lterm 	1/2*SZW**2*FW**2  where FW=deriv^mu*WW15^a-deriv5/R*WW1^mu^a -(EE/SW)*eps^a^b^c*WW1^mu^b*WW15^c.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now we take care of 4-gluon interactions using AUX fields


parameter Maux=1.
vector	        GX_S/GX_S: (GX_S, mass Maux, color c8,  * ),
		GX_T/GX_T: (GX_T, mass Maux, color c8,  * ),
		GX_U/GX_U: (GX_U, mass Maux, color c8,  * ),
		GX_V/GX_V: (GX_V, mass Maux, color c8,  * ),
		GX_W/GX_W: (GX_W, mass Maux, color c8,  * ).


let 		Gnonab00^mu^nu^a=i*GS*f_SU3^a^b^c*G^mu^b*G^nu^c,
		Gnonab01^mu^nu^a=i*GS*f_SU3^a^b^c*G^mu^b*'G_1'^nu^c,
		Gnonab10^mu^nu^a=i*GS*f_SU3^a^b^c*'G_1'^mu^b*G^nu^c,
		Gnonab11^mu^nu^a=i*GS*f_SU3^a^b^c*'G_1'^mu^b*'G_1'^nu^c,
		Gnonab02^mu^nu^a=i*GS*f_SU3^a^b^c*G^mu^b*'G_2'^nu^c,
		Gnonab20^mu^nu^a=i*GS*f_SU3^a^b^c*'G_2'^mu^b*G^nu^c,
		Gnonab12^mu^nu^a=i*GS*f_SU3^a^b^c*'G_1'^mu^b*'G_2'^nu^c,
		Gnonab21^mu^nu^a=i*GS*f_SU3^a^b^c*'G_2'^mu^b*'G_1'^nu^c,
		Gnonab22^mu^nu^a=i*GS*f_SU3^a^b^c*'G_2'^mu^b*'G_2'^nu^c.


lterm 	-F**2/4  where F=deriv^mu*Gtot^nu^a-deriv^nu*Gtot^mu^a.
lterm  	 -1/4*(F*Gnonab+Gnonab*F) 
     		  where 
     		  F=deriv^mu*Gtot^nu^a-deriv^nu*Gtot^mu^a,
     		  Gnonab=i*GS*f_SU3^a^b^c*Gtot^mu^b*Gtot^nu^c.

lterm 	 -i*1/Sqrt2*'GX_S.t'*(Gnonab00+Gnonab11+Gnonab22).
lterm 	 -i*1/Sqrt2*'GX_T.t'*(Gnonab01+Gnonab10+1/Sqrt2*(Gnonab12+Gnonab21)).
lterm 	 -i*1/Sqrt2*'GX_U.t'*(Gnonab02+Gnonab20+1/Sqrt2*Gnonab11).
lterm 	 -i*1/Sqrt2*'GX_V.t'*(Gnonab12+Gnonab21).
lterm 	 -i*1/Sqrt2*'GX_W.t'*(1/Sqrt2*Gnonab22).



lterm 	1/2*SZG**2*FG**2 where FG=deriv^mu*G5^a-deriv5/R*Gtot^mu^a.
lterm 	1/2*SZG**2*(FG*Gnonab+Gnonab*FG)
        			where 
			FG=deriv^mu*G5^a-deriv5/R*Gtot^mu^a,
		      Gnonab=i*GS*f_SU3^a^b^c*Gtot^mu^b*G5^c.

vector	        Gaux_S5/Gaux_S5: (Gaux_S5, mass Maux, color c8,  * ),
		Gaux_T5/Gaux_T5: (Gaux_T5, mass Maux, color c8,  * ),
		Gaux_U5/Gaux_U5: (Gaux_U5, mass Maux, color c8,  * ),
		Gaux_V5/Gaux_V5: (Gaux_V5, mass Maux, color c8,  * ).

let 		GnonabG01^mu^a=i*GS*f_SU3^a^b^c*G^mu^b*'~G_1.f'^c/SZG,
		GnonabG02^mu^a=i*GS*f_SU3^a^b^c*G^mu^b*'G_2.f'^c/SZG,
		GnonabG11^mu^a=i*GS*f_SU3^a^b^c*'G_1'^mu^b*'~G_1.f'^c/SZG,
		GnonabG12^mu^a=i*GS*f_SU3^a^b^c*'G_1'^mu^b*'G_2.f'^c/SZG,
		GnonabG21^mu^a=i*GS*f_SU3^a^b^c*'G_2'^mu^b*'~G_1.f'^c/SZG, 
		GnonabG22^mu^a=i*GS*f_SU3^a^b^c*'G_2'^mu^b*'G_2.f'^c/SZG.

lterm 	 -i*SZG*Gaux_S5*(GnonabG01+1/Sqrt2*(GnonabG12-GnonabG21)).
lterm  	 -i*SZG*Gaux_T5*(GnonabG02+1/Sqrt2*GnonabG11).
lterm 	 -i*SZG*Gaux_U5*(1/Sqrt2*GnonabG22).
lterm 	 -i*SZG*Gaux_V5*(1/Sqrt2*(GnonabG12+GnonabG21)).


% end of 4-gluon interactions using AUX fields
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GAUGE FIXING AND GHOSTS LAGRANGIAN

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GAUGE FIXING


lterm  	-1/2*(deriv*Gtot - SZG**2*deriv5/R*G5)**2.

lterm  	-(deriv*'W+' - SZW**2*deriv5/R*'W+5' - MW*'Chi+')*(deriv*'W-' - SZW**2*deriv5/R*'W-5' - MW*'Chi-').

lterm  	-1/2*(deriv*BB - SZB**2*deriv5/R*B5 + (EE/CW)*(v/2)*'Chi0')**2.

lterm  	-1/2*(deriv*W3 - SZW**2*deriv5/R*W35 - MW*'Chi0')**2.


% GHOSTS INTERACTIONS


lterm		 i*GS*f_SU3*( (deriv^mu*GhG)*Gtot^mu*ghG - SZG**2*(deriv5/R*GhG)*G5*ghG ).

lterm 	(EE/SW)*eps*( (deriv*Gh)*gh*WW1 - SZW**2*(deriv5/R*Gh)*gh*WW15 ).
		
lterm		 -MW/2*EE/SW*(Gh1*(H*gh1 + gol3*gh2 - gol2*gh3) + Gh2*(-gol3*gh1 + H*gh2 + gol1*gh3) + Gh3*(gol2*gh1 - gol1*gh2 + H*gh3)).

lterm		 -MW/2*EE/CW*(GhY*(-gol2*gh1 + gol1*gh2 -H*gh3) + (-Gh1*gol2 + Gh2*gol1 -Gh3*H)*ghY).

lterm 	-MW/2*EE*SW/CW**2*(GhY*H*ghY).



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% LEFT FERMIONS KINETIC TERM


lterm  	anti(psi)*gamma*(i*deriv - (EE/SW)*taupm*WW/2 - Y*(EE/CW)*BB)*psi
		where 
			psi=l1,  Y=-1/2;
			psi=l2,  Y=-1/2;
			psi=l3,  Y=-1/2;
			psi=q1a, Y= 1/6;
			psi=q2a, Y= 1/6;
			psi=q3a, Y= 1/6.


lterm  	-ZQ*anti(psi)*gamma5*(deriv5/R + i*(EE/SW)*taupm*WW5/2 + i*Y*(EE/CW)*B5)*psi
		where 
			psi=q1, Y= 1/6;
			psi=q2, Y= 1/6.
			
			
lterm  	-ZTL*anti(psi)*gamma5*(deriv5/R + i*(EE/SW)*taupm*WW5/2 + i*Y*(EE/CW)*B5)*psi
		where 
			psi=q3, Y= 1/6.


lterm  	-ZL*anti(psi)*gamma5*(deriv5/R + i*(EE/SW)*taupm*WW5/2 + i*Y*(EE/CW)*B5)*psi
		where 
			psi=l1,  Y=-1/2;
			psi=l2,  Y=-1/2;
			psi=l3,  Y=-1/2.


% RIGHT FERMION KINETIC TERM


lterm  	anti(psi)*gamma*(i*deriv - Y*(EE/CW)*BB)*psi
		where 
			psi=e1R, Y= -1;
			psi=e2R, Y= -1;
			psi=e3R, Y= -1;
			psi=uR, Y=  2/3;
			psi=cR, Y=  2/3;
			psi=tR, Y=  2/3;
			psi=dR, Y= -1/3;
			psi=sR, Y= -1/3;
			psi=bR, Y= -1/3.


lterm  	-Zu*anti(psi)*gamma5*(deriv5/R + i*Y*(EE/CW)*B5)*psi
		where 
			psi=uR, Y=  2/3;
			psi=cR, Y=  2/3.
			
lterm  	-ZtR*anti(psi)*gamma5*(deriv5/R + i*Y*(EE/CW)*B5)*psi
		where 		
			psi=tR, Y=  2/3.

lterm  	-Zd*anti(psi)*gamma5*(deriv5/R + i*Y*(EE/CW)*B5)*psi
		where 
			psi=dR, Y= -1/3;
			psi=sR, Y= -1/3;
			psi=bR, Y= -1/3.


lterm  	-Ze*anti(psi)*gamma5*(deriv5/R + i*Y*(EE/CW)*B5)*psi
		where 
			psi=e1R, Y= -1;
			psi=e2R, Y= -1;
			psi=e3R, Y= -1.



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% HERE START THE TERMS WHICH DO NOT INCORPORATE A LOOP COORECTION 



% YUKAWA COUPLINGS


lterm 	-M/MW/Sqrt2*(EE/SW)*(anti(pl)*pr*phi + anti(pr)*pl*Phi )
    		where
			M=Vud*Md, pl=q1a, pr=dR;
			M=Vus*Ms, pl=q1a, pr=sR;
			M=Vub*Mb, pl=q1a, pr=bR;
			M=Vcd*Md, pl=q2a, pr=dR;
			M=Vcs*Ms, pl=q2a, pr=sR;
			M=Vcb*Mb, pl=q2a, pr=bR;
			M=Vtd*Md, pl=q3a, pr=dR;
			M=Vts*Ms, pl=q3a, pr=sR;
			M=Vtb*Mb, pl=q3a, pr=bR.


lterm  	-M/MW/Sqrt2*(EE/SW)*(anti(pl)*i*tau2*pr*Phi + anti(pr)*i*pl*tau2*phi ) 
		where
			M=Mu,  pl=q1a, pr=uR;
			M=Mc,  pl=q2a, pr=cR;
			M=Mtop, pl=q3a, pr=tR.

lterm 	-M/MW/Sqrt2*(EE/SW)*(anti(pl)*pr*phi + anti(pr)*pl*Phi )
    		where
			M=Me, pl=l1, pr=e1R;
			M=Mmu, pl=l2, pr=e2R;
			M=Mtau, pl=l3, pr=e3R.
	


ued_5th deriv -> deriv5/R, Gtot -> G5.

% QUARK-GLUON INTERACTION


lterm		GS*anti(psi)*lambda*gamma*Gtot*psi 
		where
			psi=q1; 
			psi=q2;
			psi=q3;
			psi=uR;
			psi=dR;
			psi=cR;
			psi=sR;
			psi=tR;
			psi=bR.




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SetAngle(1-SW**2=CW**2).
SetAngle(1-sBW1**2=cBW1**2).
SetAngle(1-sBW2**2=cBW2**2).
SetAngle(1-s231**2=c231**2).
SetAngle(1-s232**2=c232**2).
SetAngle(1-s131**2=c131**2).
SetAngle(1-s132**2=c132**2).
SetAngle(1-s121**2=c121**2).
SetAngle(1-s122**2=c122**2).

SetAngle(1-sBW3**2=cBW3**2).
SetAngle(1-sBW4**2=cBW4**2).
SetAngle(1-s233**2=c233**2).
SetAngle(1-s234**2=c234**2).
SetAngle(1-s133**2=c133**2).
SetAngle(1-s134**2=c134**2).
SetAngle(1-s123**2=c123**2).
SetAngle(1-s124**2=c124**2).

CheckHerm.
CheckMasses.